Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564184

RESUMO

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Assuntos
Hormônios Hipotalâmicos , Privação do Sono , Ratos , Masculino , Humanos , Animais , Hormônio Liberador de Prolactina/farmacologia , Hormônio Liberador de Prolactina/metabolismo , Privação do Sono/metabolismo , Transtornos do Humor/etiologia , Qualidade de Vida , Ratos Wistar , Hormônios Hipotalâmicos/metabolismo , Sono/fisiologia , Neurônios/fisiologia , Norepinefrina/metabolismo
2.
Neuron ; 110(24): 4144-4161.e7, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36261033

RESUMO

A stunning example of synaptic diversity is the postsynaptic target cell-type-dependent difference in synaptic efficacy in cortical networks. Here, we show that CA1 pyramidal cell (PC) to fast spiking interneuron (FSIN) connections have 10-fold larger release probability (Pv) than those on oriens lacunosum-moleculare (O-LM) interneurons. Freeze-fracture immunolabeling revealed that different nano-topologies and coupling distances between Ca2+ channels and release sites (RSs) are not responsible for the distinct Pv. Although [Ca2+] transients are 40% larger in FSINs innervating boutons, when [Ca2+] entry is matched in the two bouton populations, EPSCs in O-LM cells are still 7-fold smaller. However, application of a phorbol ester analog resulted in a ∼2.5-fold larger augmentation at PC - O-LM compared to PC - FSIN synapses, suggesting incomplete docking or priming of vesicles. Similar densities of docked vesicles rule out distinct RS occupancies and demonstrate that incompletely primed, but docked, vesicles limit the output of PC - O-LM synapses.


Assuntos
Hipocampo , Vesículas Sinápticas , Hipocampo/fisiologia , Sinapses/fisiologia , Interneurônios/fisiologia , Probabilidade
3.
Neuroendocrinology ; 111(12): 1219-1230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361699

RESUMO

INTRODUCTION: Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS: To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS: Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION: These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.


Assuntos
Endocanabinoides/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Neurônios/fisiologia , Puberdade/metabolismo , Transdução de Sinais/fisiologia , Potenciais Sinápticos/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fator de Crescimento Insulin-Like I/administração & dosagem , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos
4.
eNeuro ; 5(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30079374

RESUMO

Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17ß-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor ß (ERß), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERß/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERß/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.


Assuntos
Estradiol/metabolismo , Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Proestro/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Front Cell Neurosci ; 10: 214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672360

RESUMO

Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 µM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 µM). Intracellular application of the G-protein inhibitor GDP-ß-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 µM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 µM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 µM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 µM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 µM) impeded the GLP-1-triggered endocannabinoid pathway indicating an anandamide-TRPV1-sensitive control of 2-arachidonoylglycerol (2-AG) production. Furthermore, GLP-1 immunoreactive (IR) axons innervated GnRH neurons in the hypothalamus suggesting that GLP-1 of both peripheral and neuronal sources can modulate GnRH neurons. RT-qPCR study confirmed the expression of GLP-1R and neuronal NO synthase (nNOS) mRNAs in GnRH-GFP neurons. Immuno-electron microscopic analysis revealed the presence of nNOS protein in GnRH neurons. These results indicate that GLP-1 exerts direct facilitatory actions via GLP-1R on GnRH neurons and modulates NO and 2-AG retrograde signaling mechanisms that control the presynaptic excitatory GABAergic inputs to GnRH neurons.

6.
Front Cell Neurosci ; 10: 77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065803

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17ß-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/ß blocker Faslodex (1 µM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 µM) and intracellularly applied endocannabinoid synthesis blocker THL (10 µM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERß specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERß antagonist PHTPP (1 µM) indicating that ERß is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These data suggest the involvement of the retrograde endocannabinoid mechanism in the rapid direct effect of E2. These results collectively indicate that estrogen receptor beta and 2-AG/CB1 signaling mechanisms are coupled and play an important role in the mediation of the negative estradiol feedback on GnRH neurons in acute slice preparation obtained from intact, metestrous mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA